. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Comparing the double-cone shape with the base-diameter-axis to a cube rotating around any
central-axis using the same equivalent measures, we can quickly get to;
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the same result as was found earlier when just the moment of inertia was compared.

When comparing the moment of inertia of the core shapes we can't help but to also compare
rotational kinetic energy differences the core shapes.

We have discovered that a diamond shaped core will have more rotational kinetic energy than a solid
cubical shaped core under nearly equivalent measurement and rotational conditions.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

THEORETICAL COMPARISONS: MOMENT OF INERTIA

Rotational Inertia Considerations: Sphere vs. Diamond Core

The list of basic assumptions is an attempt to hold constant many variables in the design of a bowling
ball core so that only the three dimensional shape and mass distribution can be directly compared to
create meaningful comparisons and will be used to make some predictions on some of the physical
parameters and dynamics of a bowling ball. To make comparisons based on the “shape alone” and to
determine if there is an advantageous core shape the following assumptions will highlight possible
physical differences.

Basic Assumptions for Comparisons:

1. Each core is of similar dimension, constant density, and will have the same mass.
(equal size, weight, and smooth mass distribution)

2. Each core is set revolving about is rotational axis to the same rotational velocity.
(equal spin speed)

3. Each core rotates about an axial geometric center.
(axis through center)

These assumptions of equivalence will highlight differences in core shape designs. These first direct
comparisons are core shape to core shape only and *do not* include the rest of the bowling ball. Core
shape design dynamics that includes the effect of the filler and coverstock will be attempted in a future
research project.

Rotational inertia (moment of inertia) of an object describes how difficult it is to induce an angular
rotation of the object about a given axis through that object. Simply, an object of mass resists a change in
angular velocity. If a body has a large moment of inertia, then it is difficult to change its angular velocity.
If it has a small moment of inertia, it is easier to change its angular velocity. The moment of inertia for any
object depends on a number of factors including the object's mass, its shape, and the axis of rotation.

The calculated theoretical moment of inertia for a solid spherical mass (1) was determined fo be the
same for any given axis through its geometrical center (due to the high degree of symmetry—Figure 1).
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X-axis
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2 5 Figure 1: The moment of inertia (1)
Ly s =§MR formulae around each principle

axis for a solid sphere.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

The calculated theoretical moment of inertia for a double solid cone (I) was determined to be the
same for two axes through the base of each cone while different for an axis through the vertices of the

geometrical solid (Figure 2).

I, e =— MR? + = MI?
AT 5

Figure 2: The moment of inertia (1) formulae around each principle axis for a double solid cone
(approximate diamond core shape).

Now a comparison: If we compare a “diamond core” (double-right cone) to a spherical core around the
following central rotational axes we can see that the rotational inertia will be different for each core since
the calculated moment of inertia formula differs due to the different mass distribution about the rotational

axis for each geometric solid shape (Figure 3).
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Figure 3: The comparison of moment of inertia formulae for each core shape.

We can begin our first attempt at comparing the dynamic differences of core shape design by doing a
direct comparison of the important quantities that govern the measured and theoretical moment of inertia
of these rotating solids. We will employ a simple physical ratio of the rotational inertia formula for each

object to highlight any difference core shape may yield.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Using Assumption #1 described earlier that each core is of constant density, both cores have the same
mass, and each is of similar dimension (where the radius of the spherical core is equal to the radius of
double cone), then;
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and
dotcble—cone — sphere = R
24 (R )
D ia]nond COI‘B N 5 double —cone douhle—cone N B / _
Solid Sphere Core ) 2 - B
(g ‘M.vphuru (R.vphun: ) J ( ‘MR J /

All we have done is compare the moment of inertia of two cores where the only principle difference
between them is the mass distribution about the rotational axis. This shows that the shape alone of a core
creates different physical results for the rotational analog to mass. Rotational inertia describes an object’s
resistance to a change in its rotational motion, therefore, this result shows that the double-solid-cone
(approximate diamond core) has more rotational inertia. Once the double-cone core is revolving with a
given angular velocity (spin speed) it will resist changes to that angular velocity more than the solid sphere
core.

Now a different comparison: Now we compare a “diamond core” (double-right cone) to a spherical core
around the following rotational axes. (This would have the diamond core rotating end over end— Figure

4)
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Figure 4: The comparison of moment of inertia formulae for each core shape: sphere rotating about
its center and double-cone rotating end over end.

Again, using a physical ratio of the rotational inertia formula for each object we get the following
mathematical expression;

3 2 1 2
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

This expression may look daunting, but we can draw some conclusions if we are smart in making the
comparison. Using Assumption #1 with cores of constant density, cores that are of equal mass, and
each is of similar dimension (where the radius of the spherical core is equal to the radius and height of the
double cone ), then; v M M

and

donble—cone sphere double—cone

double—cone

sphere

Comparing with assumption #1 and the cores rotating about these axes, we get the following result;
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This again shows that the shape alone of a core creates different physical results. Even about the
different axis once the double-cone core is revolving with a given angular velocity (spin speed) it will resist
changes to that angular velocity more than the solid sphere core. If we picked a rotational axis somewhere
between the two extremes of the double-cone core shape (base-axis or vertex-to-vertex axis) the moment
of inertia (ratios) values will be somewhere between the two results (1.25-1.50) that have been obtained.
Therefore, it is safe to say that the solid double-cone core shape will have more rotational inertia than the
simple spherical solid shape of the same constant density, mass, and relative size.

Theoretical Comparisons

Rotational Energy Considerations: Sphere vs. Diamond Core

So, besides, the idea that shape will influence the dynamics of a core what else can we determine
with these moment of inertia formulae ratios? Using Assumption #2 that each core is set revolving about
is rotational axis to the same rofational velocity we can delve into the realm of the “energy” content of a
rotating core of a specific shape and highlight the differences when we attempt energy considerations.

Recall Rotational Kinetic Energy is given by the equation:

|

K.E —Ilw

*rotational —

Kinetic energy of rotation depends not only on angular velocity (o) but also on the moment of inertia (I)
of the spinning object (in this case—core). The rotational inertia of a core can be varied with different
designed mass configurations (different core shapes).
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

So a we can make simple ratios to show the difference in the rotational kinetic energy that a spherical
core will contain versus the amount of double-cone core shape.

Comparing the double-cone shape with the vertex to vertex axis to a solid sphere rotating around any
principle axis. 1 ,
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Now, reminding ourselves that we are investigating the importance of the mass distribution of a
bowling ball core shape, we can clearly highlight the rotational energy content differences of the two. With

both objects spinning with the same rotational velocity (), both with the same overall mass (M), and,
finally, both cores assumed to be the same size (R) the preceding mathematical ration reduces to a result

we have already seen. . R
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Comparing the double-cone shape with the base-axis fo a solid sphere rotating around any principle
axis using the same equivalent measures, we can quickly get to;
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS
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the same result as was found earlier when just the moment of inertia was compared.

When comparing the moment of inertia of the core shapes we are also comparing the possible
rotational kinetic energy differences between the two core shapes as long as the cores have similar
density, mass, dimension, and equivalent rotational speed.

We have discovered that a diamond shaped core will have more rotational kinetic energy than a solid
spherical shaped core under equivalent measurement and rotational conditions.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

THEORETICAL COMPARISONS: MOMENT OF INERTIA

Rotational Inertia Considerations: Cylinder vs. Diamond Core

Basic Assumptions for Comparisons:

1. Each core is of similar dimension, constant density, and will have the same mass.
(equal size, weight, and smooth mass distribution)

2. Each core is set revolving about is rotational axis to the same rotational velocity.
(equal spin speed)

3. Each core rotates about an axial geometric center.
(axis through center)

The calculated theoretical moment of inertia for a solid cylinder mass (I) was determined fo be the
same for any given axis through its geometrical center parallel to the cylindrical base (due to the high
degree of symmetry—Figure 1), but different with a central rotational axis parallel to its side .

Z-axis

B1 1 1 1 ) E1

4 MR+ 12 ML 1, g = 4 R 12 ML the Leons = ) MR™ calculated  theoretical

{

X—axis

Figure 1: The moment of inertia (I) formulae around each principle axis for a solid cylinder.

moment of inertia for a double solid cone (1) was determined to be the same for the axes through the
base of each cone while different for an axis through the vertices of the geometrical solid (Figure 2).

I._,..=-—MR*+—Mh? I =— MR*+—- MK I,_m_h_::—'vaz
X—axis 10 5 yV—axis 10 + 5 Z—Oxils 5 4

Figure 2: The moment of inertia (1) formulae around each principle axis for a double solid cone
(approximate diamond core shape).
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Now a comparison: |f we compare a “diamond core” (double-right cone) fo a cylindrical core around the
following central rotational axes we can see that the rotational inertia will be different for each core since
the calculated moment of inertia formula differs due to the different mass distribution about the rotational

axis for each geometric solid shape (Figure 3).
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Figure 3: The comparison of moment of inertia formulae for each core shape.

We will employ a simple physical ratio of the rotational inertia formula for each object to highlight any
difference core shape may yield. Using Assumption #1 described earlier that each core is of constant
density, both cores have the same mass, and each is of similar dimension (where the radius of the

cylinder core is equal to the radius of double cone), then;
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All we have done is compare the moment of inertia of two cores where the only principle difference
between them is the mass distribution about the rotational axis. Once the double-cone core is revolving
with a given angular velocity (spin speed) it will resist changes fo that angular velocity more than the solid

cylinder core.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Now a different comparison: Now we compare a “diamond core” (double-right cone) to a cylindrical core
around the following rotational axes. (This would have the diamond core rotating end over end which
occurs in a stacked drilling when the pin axis is 90 degrees fo the bowler’s preferred axis point.)
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Figure 4: The comparison of moment of inertia formulae for each core shape: sphere rotating about
its center and double-cone rotating end over end.

Again, using a physical ratio of the rotational inertia formula for each object we get the following
mathematical expression;
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Assumption #1 — cores of constant density, equal mass, and similar dimension (where the radius
and height of the cylinder is equal to the radius and height of the double cone), then;
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we get the following result
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Theoretically, once the double-cone core is revolving with a given spin speed it will resist changes fo
that motion more than the solid cylinder core. If we picked a rofational axis somewhere between the two
extremes of the double-cone core shape (base-axis or vertex-to-vertex axis) the moment of inertia (ratios)
values will be somewhere between the two results (1.20-1.50) that have been obtained. Therefore, it is
safe to say that the solid double-cone core shape will have more rotational inertia than the solid cylinder
shape of the same constant density, mass, and relative size.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Theoretical Comparisons
Rotational Energy Considerations: Cylinder vs. Diamond Core

What about rotational energy? Using Assumption #2 that each core is set revolving about is
rotational axis to the same rotational velocity we will highlight the differences of rotational kinetic energy.

Comparing the double-cone shape with the vertex to vertex axis to a
cylinder rotating around any principle 1. ,axs.
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Highlighting the “shape” differences in the rotational energy with both objects spinning with the same

rotational velocity (), both with the same overall mass (M), and, finally, both cores same dimension (R)
the preceding mathematical ration reduces to a result we have already seen.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Comparing the double-cone shape with the base-diameter-axis to a cylinder rotating around any

central- . diameter-
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the same result as was found earlier
when just the moment of inertia was
compared.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

THEORETICAL COMPARISONS: MOMENT OF INERTIA

Rotational Inertia Considerations: Cube vs. Diamond Core

Basic Assumptions for Comparisons:

1. Each core is of similar dimension, constant density, and will have the same mass.
(equal size, weight, and smooth mass distribution)

2. Each core is set revolving about is rotational axis to the same rotational velocity.
(equal spin speed)

3. Each core rotates about an axial geometric center.
(axis through center)

The calculated theoretical moment of inertia for a solid cubical mass (I) was determined to be the
same for any given axis through its geometrical center (due to the high degree of symmetry—Figure 1). In
fact, a cube will have the same moment of inertia with any axis through its center.

o il il

1 >
=—MS*T h el = MLS" I__w M? calculated theoretical

¥= axis

moment of inertia for a double solid cone (I) was
Figure 1: The moment of inertia (I) formulae around each principle axis for a solid cube.

X—axis

determined to be the same for the axes through the base of each cone while different for an axis through
the vertices of the geometrical solid (Figure 2).

I, =—MR*+~Mh? L. =-MR
V—axis 10 5 z _

Figure 2: The moment of inertia (I) formulae around each principle axis for a double solid cone
(approximate diamond core shape).
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Now a comparison: If we compare a “diamond core” (double-right cone) to a solid cube core around the
following central rotational axes we can see that the rotational inertia will be different for each core since
the calculated moment of inertia formula differs due to the different mass distribution about the rotational

axis for each geometric solid shape (Figure 3).
Q_>2 Rdoubfe-cone

= Sselid-cube

core ~ * double—cone .
I'f'f _!,:lﬂ/f_h,(,s’_b,)z ] :E_‘.{M (R )2
solid—cube 6 cune cune double—cone 5 double—cone double—cone

Figure 3: The comparison of moment of inertia formulae for each core shape.

Using Assumption #1 described earlier that each core is of constant density, both cores have the

same mass, and each is of similar dimension (where the side length of the cube core is equal to the radius
of double cone), then;
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All we have done is compare the moment of inertia of two cores where the only principle difference
between them is the mass distribution about the rotational axis. Once the double-cone core is revolving

with a given angular velocity (spin speed) it will resist changes to that angular velocity much more than
the cubical core.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Now a different comparison: Now we compare a “diamond core” (double-right cone) to a cubical core
around the following rotational axes. (This would have the diamond core rotating vertex over vertex.)
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Figure 4. The comparison of moment of inertia formulae for each core shape: cube rotating about
its center and double-cone rotating end over end.

Again, using a physical ratio of the rotational inertia formula for each object we get the following
mathematical expression;

Diamond Core E

3 2 1 2
( Md'rmbh:—crmc (R(J’r;ubfﬁ—cmm ) + g ‘M(r'rmb.fr: —cone (hc.r'rmbfu —cone )
Solid Cube Core 1 2

o )Mr'ubu (S‘r_'ubu )

6

Assumption #1 — cores of constant density, equal mass, and similar dimension (where the side
length of the cube is equal to the radius and height of the double cone), then;
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we get the following result
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Theoretically, once the double-cone core is revolving with a given spin speed it will resist changes fo
that motion much more than the solid cube. If we picked a rotational axis somewhere between the two
extremes of the double-cone core shape (base-axis or vertex-to-vertex axis) the moment of inertia (ratios)
values will be somewhere between the two results (3.0-3.6) that have been obtained. Therefore, it is very
safe to say that the solid double-cone core shape will have more rotational inertia than the solid cube
shape of the same constant density, mass, and relative size.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Theoretical Comparisons

Rotational Energy Considerations: Cube vs. Diamond Core

What about rotational energy? Using Assumption #2 that each core is set revolving about is
rotational axis to the same rotational velocity we will highlight the differences of rotational kinetic energy.

Comparing the double-cone shape with the vertex to vertex axis to a cube
rotating around any principle axis. & T 1 16
2
1 / 5
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Highlighting the “shape” differences in the rotational energy with both objects spinning with the same
rotational velocity (), both with the same overall mass (M), and, finally, both cores same dimension (R)
the preceding mathematical ration reduces to a result we have already seen.
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. BOWLING BALL CORE SHAPE DYNAMICS: DIRECT CORE COMPARISONS

Comparing the double-cone shape with the base-diameter-axis to a cube rotating around any
central-axis using the same equivalent measures, we can quickly get to;
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the same result as was found earlier when just the moment of inertia was compared.

When comparing the moment of inertia of the core shapes we can't help but to also compare
rotational kinetic energy differences the core shapes.

We have discovered that a diamond shaped core will have more rotational kinetic energy than a solid
cubical shaped core under nearly equivalent measurement and rotational conditions.
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