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= BOWLING BALL CORE SHAPE DYNAMICS: CALCULATING INERTIA

The Moment of Inertia of Rigid Masses
Moment of Inertia:

The moment of inertia of an object about an axis relates the angular velocity of an object (how fast it's
spinning) to how much angular momentum it has. This tells us how much torque must be exerted on the
object to get it spinning, or how much energy it has when it's spinning at some rate. To determine the
rotational inertia of an arbitrarily shaped object generally involves a thorough understanding of calculus
techniques and geometry because a rotating geometrical solid has a continuous distribution of mass at a
continually varying distance from the rotation axis. The moment of inertia of a rigid body can be
determined using the following steps using whatever coordinate system may be convenient for the
calculation at hand depending on the rotational axis and symmetry of the solid object.

STEP ONE.:

Realizing that the rotational inertia ( 1) of a point mass ( m ) revolving around an axis at a distance
( ») from that axis is given by;

Axis of Rotation

we can break up any object into a large collection of infinitesimally small masses ( dm ) each with their
own radial distances from the rotation axis. This kind of mass element is called a differential element. We
will need to find the moment of inertia for each individual mass element (dm) about the axis.

_/ Axis of Rotation
dm

Each element rotating about the axis will behave as an individual point mass with an infinitesimally
small moment of inertia ( I ) given by;

dl =r dm

Note that the differential element of moment of inertia ( @/ ) must always be defined with respect to a
specific rotation axis.
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= BOWLING BALL CORE SHAPE DYNAMICS: CALCULATING INERTIA

STEP TWO

The moment of inertia of the body is then the sum of all these differential elements. This “integration”
of the individual small pieces creates the whole body that is being calculated. This is “integrating” the
individual pieces or “integration of the mathematical” function over the extent of the geometrical rigid
rotating body.

The sum over all these mass elements is called an integral over the mass and will determine the moment
of inertia.

I=[ar={ r’dm
object

If the rigid body is nearly a one dimensional object (say a thin long rod) then this integral is in one
dimension. Likewise, if the rigid body is planar (a disk shape) it is a double integral over two dimensions
and if the mass is a three dimensional object (a sphere, for example) then it will be a triple integral.
Picking symmetric shapes and/or different coordinate systems to tackle the integration can make the
mathematical work much easier as you will be able to see in the calculations.

STEP THREE

In some cases, it may also be necessary to use the Parallel Axis Theorem to fully determine the moment
of inertia about more exotic rotation axis that a rigid body may be revolving.

Parallel Axis Theorem: The moment of inertia of a body about any given axis is the moment of inertia
about a parallel axis through the center of mass, plus the moment of inertia about the given axis if all the
mass of the body were located at the center of mass.

I=1_ +md’

ocm

WHAT FOLLOWS IN THIS SECTION IS THE APPLICATION OF THESE PHYSICAL
PRINCIPLES AND CALCULUS TECHNIQUES TO A SET OF GEOMETRICAL SOLIDS
OFTEN FOUND AS THE CORE SHAPES IN BOWLING BALLS. WE ARE ABLE TO
THEORETICALLY CALCULATE THE SHAPED CORE MOMENTS OF INERTIA AND
COMPARE THEM TO SOME EXPERIMENTAL MEASURES AND TO LITERATURE
WHILE INVESTIGATING THE FUNDAMENTAL. ISSUES OF THE “SHAPE” AND ITS
MOTIONAL DYNAMICS.
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. THEORETICAL MOMENT OF INERTIA: RIGHT SOLID CONE

Result:

Mathematical Derivation

Cone: z-axis rotation

M

[ = J ridm dm = pdV Assuming constant density 3
o I, =—MR?

M. =p(Volume) = dm=pdV = pAd:z

disk

r' is the radius of a disk element at some "z" value from the origin.
R y! R
—=tanf =— = r'=(—)z
h z h
dm = pAdz = p(fr (r')z )dz

Putting all this together, using each "disk" element of the cone

up from the vertex along the z-axis, we get the following;
1 2
[ =|—|p(4 ' d.
comne J 2 [p( )][(r ) ] Z
1
[, = sz(fr(r')z)[(r')z] dz

Now, plug in how »' varies with z

e Feo () (&)) ]

Assuming a uniform density;

Mass M 1 M
= = I then... I =— I TR'A
Volume —?rRzk 10 erlh
3 3
3 :
then = ! =—MR

10
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. THEORETICAL MOMENT OF INERTIA: RIGHT SOLID CONE

Mathematical Derivation Results:

Cone: x & y axis rotation

e (DN bl () |,
(2]

x—axis T T y—axis

R Y OO R . ” o
?") & “I((?H - [ =1 =—MR>+>Mh
- 20 5

x 3

1 =—px

4 1 * 3
[ =—prRh+—prR K
20 5

Assuming a uniform density;

Mass M
p e e

Volume 1 ..
3

h

then...

1 M 4 1 M 3
I = = TR h+— T TR h
20 C AR 5 —REH
3 3

Center of Mass":.:

z=34)'1T

3 y B
then = |/ =—MR +=MHK
20 5

-
Now, using the parallel-axis thereom, where any moment Q_/
inertia can be found from;

I = +md® where d is the distance from the cm-axis rotation

center of mass

center of mass axis to the new axis, we can find the following;

3
3 3 3
conmrotmess = - MR* + =MK - M (—h)
20 5 4 i
3 3 ; %
I =——MR*+—Mhn"| This will be around an axis through location
20 80

the centerof mass & parallel to the cone's base. Also, we can get

base om

, 3 ., 3 . 1y
[ +md =—MR +—Mh + M| —h
20 80 4

CFPRCE TV — _ base-axis rotation
— MR+ — Mh"| This will be around an axis parallel and
20 10

through the base of a cone.

1

base
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. THEORETICAL MOMENT OF INERTIA: DOUBLE CONES / BASE FACING

Mathematical Derivation

Using symmetry and the previous results from the single cone
calculations, we find the following;

o 2+ L
20 10

base —axis

Dyneons = — MR® +~ M7 -
se-avis — 1y 5 central-axis

Likewise,

I(emmf—mis = 2 (ﬁ}“ JM(RE ]

I == MR?

central —axis

n| L

base-axis
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= THEORETICAL MOMENT OF INERTIA: RECTANGULAR SOLID & CUBE

Results:
Mathematical Derivation DESUTS

Rectangular Solid

M
I= I r’dm  dm=pdV  Assuming constant density I = % ( Py Bz)
i]

Izjdf :Irlpdl’ =pIr2dF’ r=yx’+)° T (Bz+(_,‘2)
12

¥

Now since there are four quadrants to sum:

“¥%e fv=ﬁ(142+cz)
I=d4xp[ [ [+ ydxdyd: bo12
000 Result:

Solid Cube

( 4B B-‘A] - ¥, oxis 4 2-axis
y

but _ mass M / B
P volume ABC X-axis

N5 JL
;:%(/ﬁ +8%) | andfor Solid Cube (A =B=C =)

M,
I = moment of inertia .= ?(9)
M = mass of core

/
A B C ide length
are side lengths x'y?'

S = side length of cube
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= ““ THEORETICAL MOMENT OF INERTIA: SOLID SPHERE

Result

Solid Sphere

Mathematical Derivation

M
= erdm dm=pdV ~ Assuming constant density

0

— _ 1 2 _ l 2 2
I-Id[ —J'Ey pdV —Epjy my‘dz
| R &
& fr,oj yidz  with  y=+JR* -2’ : 4

T2
$0

-R

= %ﬁpf (R2 -z )zdz
-R
I=%7{pf (R?4 -2R*Z2? +z4)dz

-R

-l R23 ¥ £
I=—nmp R4z—2 Y.
2 3 5
-R
Ii 5 5
[=—np (R5—2R +R—
3
I 5
I=l7r,o pr-ak 2R
27| 3 0s
I=— —R
2™\ 15 J
8 5
I=—nmpR
15 v

Assuming a uniform density:

= Mass M
— =7 5
Volume A;rR
then...
[—lssfr{4 M g]Rs : ].\‘phcre =§MR2
/31rR
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THEORETICAL MOMENT OF INERTIA: CYLINDRICAL SOLIDS

Mathematical Derivation

M
= Irzdm dm = pdV Assuming constant density
Q

dV = LdA = L(2zr)dr

I =Id}' = _[sz(?.frf‘ﬂ)d!”

R
I= Ir]p(Zer)dr
L]

R
I=p(2zL)|rdr
0

R

Izp(ZEL)(%J

R4
I =2prl|—

o] 4
1 —EperR

0

Assuming a uniform density:

_ Mass _ M
Volume 7R*L
then...

;:l( M }ILR“
2\zmR°L

1
then = (7, =iz

e

: Central
Axis

Results
Central Axis
1 )
]c'j:.f.fudw' = 5 MR—

Central Diameter

r=Lar2 o L2
4 12

End Diameter

1

Central Axis

I=—MR?
2

Central Diameter

I :lMR: +LML:
4 12

End Diameter

I :lﬂ/fR: +—ML’
4 3

1
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THEORETICAL MOMENT OF INERTIA: CYLINDRICAL SOLIDS

Mathematical Derivation

M

Ii= I R’dm dm = pdV Assuming constant density
0

I=[dal =[Rpdv

L L
Lo = ! % p(7R )R dz + ! p(7R ) dz

V—axis

=%pﬁR4Idz+p7rRi‘:zzdz

L

I.l-'—cax:'.\' = %pﬂ.R4 (Z)‘:] t )OERQ (%]

0

J

3
I}'—cu‘!.\' = %pﬁR‘lL + p]z’Rz [LT]

Assuming a uniform density;

3 Mass M
P= Volume 7RL
then...
_‘),
=2 Mz TR'L + Mz e
A4\ 7R°L aR°L 3
1 o) 1 ol
then = |I,_,,, =—MR" +-ML
2 4 3

End Diameter

I :]—;'L;‘r}i’2 -4—1,-'1/;'152
4 3

Now, using the parallel-axis thereom, where any moment
inertia can be found from;

I=1_ . imss +md> Where d is the distance from the

center of mass axis to the new axis, we can find the following;

center of mass

I =1MR2+1ML2—M lL
4 3 2

1= Lames !
4 12

M1’ | This will be around an axis through

o

the center of mass & parallel to the cylinders's base.

&
«
+
+
B
o
e ¥

Central Diameter

IE l,-"«;-'}i’2 +l,-"«;-ﬁ£2
4 12
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r-- THEORETICAL SUMMARY TABLE

SoLID DoUBLE CONE—DIAMOND CORE APPROXIMATION I

.

3 v 1ap2
I .w=—MR"+-Mh
X—gxis 10 S

SOLID SPHERE

= MR’ I/ =2M&R2

K—aris 5 V—axis 5

SoLID CYLINDER .
CE SalPH

31 1 I 1

=— MR? + — MI? I =—MR? +— MI? I =%zvm2

X—xis 4 V—axis 4 X—axis

SoLID CUBE

s Ci®
s r} § x
723 = §
I, = MS? L=t
R S— -
Tl 1Y g
4 — 74
1 2 2 1 2 2 1 ' 2 2
=EM(B' ) Lo =EM(A +C?) I =EM(A +B)
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